REMOTE SENSING APPLICATIONS OF THE EXTENDED RADIOSITY METHOD

by

C.C. Borel and S.A.W. Gerstl

Space Science & Technology, SST-8, MS D438 Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA

Content

- 1. RSS Activity Summary
- 2. Radiosity vs. Radiative Transfer
- 3. Applications of Radiosity Method
 - (a) Single Layer Canopy Model
 - (b) N-Layer Canopy Model
 - (c) Artificial Canopy
 - (d) Non-Linear Spectral Mixing
- 4. Extended Radiosity Method
 - (a) Introduction to Extended Radiosity Method
 - (b) Example Atmospheric Corrections
 - (c) Point Spread Functions for non-Lambertian Surfaces
- 5. Strengths & Weaknesses
- 6. New Applications
- 7. Conclusions

RSS Activity Summary

NASA's Remote Sensing Science (RSS) program activities in applications of the radiosity method in remote sensing :

Past Activities

- Applications of the radiosity method in remote sensing
- Modeling the scattering of light inside vegetative canopies
- Program was written to solve the radiosity equations for the scattering of light from many scattering leaves above a ground surface
- Developed methods to compute the bidirectional reflectance distribution function (BRDF) of canopies (Borel et al, RSE-91)
- Conducted reflectance measurements on an artificial plant canopy composed of 12000 circular disks that simulate leaves (2 papers in preparation)
- Measurements showed good agreement with the radiosity calculation
- Apply extended radiosity method to scattering medium above reflecting surface to model surface-atmosphere, atmosphere-surface and atmosphere-atmosphere scattering (Borel and Gerstl, SPIE'91)
- Model the scattering between a surface and a scattering or volumetric medium to represent an atmosphere
- Using the extended radiosity method we were able to formulate a method to compute the point spread function for any view direction and with height-dependent atmospheric scattering parameters and phase functions (Borel and Gerstl, SPIE'92)

- Using an inverse filtering method we were able to sharpen images blurred by the adjacency effect (Borel and Gerstl, IGARSS'92 Thu afternoon (4 th paper), Pasadena)
- We are currently developing hyperspectral applications (non-linear spectral mixing) of the radiosity method for EOS-sensed vegetated and bare surfaces with imaging spectrometers (1 paper to be submitted to RSE)

Ongoing / Future Work:

- Develop simpler, though still radiosity based plant canopy models for inversion and sensitivity analysis
- Develop hyperspectral canopy models for EOS-HIRIS canopy chemistry sensing initiative
- Algorithms to compute radiosity solutions for digital terrain models (surface-surface scattering)
- Include BRDFs in radiosity calculations using spherical harmonics to express the BRDFs and the radiosity at each surface.
- Integrate various applications of the radiosity method into a simulation program which computes the surface-surface, surface-volume, volume-surface and volume-volume interactions that are of importance in remote sensing.